Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain.
نویسندگان
چکیده
Investigation of the metabolome and the transcriptome of pollen of lily (Lilium longiflorum) gave a comprehensive overview of metabolic pathways active during pollen germination and tube growth. More than 100 different metabolites were determined simultaneously by gas chromatography coupled to mass spectrometry, and expressed genes of selected metabolic pathways were identified by next-generation sequencing of lily pollen transcripts. The time-dependent changes in metabolite abundances, as well as the changes after inhibition of the mitochondrial electron transport chain, revealed a fast and dynamic adaption of the metabolic pathways in the range of minutes. The metabolic state prior to pollen germination differed clearly from the metabolic state during pollen tube growth, as indicated by principal component analysis of all detected metabolites and by detailed observation of individual metabolites. For instance, the amount of sucrose increased during the first 60 minutes of pollen culture but decreased during tube growth, while glucose and fructose showed the opposite behavior. Glycolysis, tricarbonic acid cycle, glyoxylate cycle, starch, and fatty acid degradation were activated, providing energy during pollen germination and tube growth. Inhibition of the mitochondrial electron transport chain by antimycin A resulted in an immediate production of ethanol and a fast rearrangement of metabolic pathways, which correlated with changes in the amounts of the majority of identified metabolites, e.g. a rapid increase in γ-aminobutyric acid indicated the activation of a γ-aminobutyric acid shunt in the tricarbonic acid cycle, while ethanol fermentation compensated the reduced ATP production after inhibition of the oxidative phosphorylation.
منابع مشابه
Oscillatory growth in lily pollen tubes does not require aerobic energy metabolism.
Oscillatory tip growth in pollen tubes depends on prodigious amounts of energy. We have tested the hypothesis that oscillations in the electron transport chain lead to growth oscillations in lily (Lilium formosanum). Using three respiratory inhibitors, oligomycin, antimycin A, and cyanide, we find that pollen tube growth is much less sensitive to respiratory inhibition than respiration is. All ...
متن کاملEffects of Copper and Leadon Pollen Germination Traits in Almond Cultivars
There is minimal information about the effect of heavy metals such as lead and copper on pollen grains and pollen tubes of fruit trees. Fruit set of these plants are affected by different environmental, biological, physical and chemical factors. If one of these factors be abnormal, pollination, fertilization and fruit set and orchard yield will decrease. In polluted cities, this phenomenon is a...
متن کاملDigital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth
Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, includi...
متن کاملSelf-incompatibility in the Iranian Almond Cultivar ‘Mamaei’ Using Pollen Tube Growth, Fruit Set and PCR Technique
Self-incompatibility has been studied by using controlled pollination, pollen tube growth and PCR methods in the Iranian almond ‘Mamaei.’. Pollen tube growth and fruit set following self and cross-pollination treatments were evaluated. The percentage of initial and final fruit set was determined for each treatment at 30 and 60 days after controlled pollination. Pollen germination and pollen ...
متن کاملThe apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube.
In lily (Lilium formosanum) pollen tubes, pectin, a major component of the cell wall, is delivered through regulated exocytosis. The targeted transport and secretion of the pectin-containing vesicles may be controlled by the cortical actin fringe at the pollen tube apex. Here, we address the role of the actin fringe using three different inhibitors of growth: brefeldin A, latrunculin B, and pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 162 4 شماره
صفحات -
تاریخ انتشار 2013